六年級知識點數(shù)學第1篇扇形統(tǒng)計圖的意義1、扇形統(tǒng)計圖的意義:用整個圓的面積表示總數(shù),用圓內(nèi)各個扇形面積表示各部分數(shù)量同總數(shù)之間關(guān)系,也就是各部分數(shù)量占總數(shù)的百分比,因此也叫百分比圖。2、常用統(tǒng)計圖的優(yōu)下面是小編為大家整理的六年級知識點數(shù)學18篇,供大家參考。
六年級知識點數(shù)學 第1篇
扇形統(tǒng)計圖的意義
1、扇形統(tǒng)計圖的意義:用整個圓的面積表示總數(shù),用圓內(nèi)各個扇形面積表示各部分數(shù)量同總數(shù)之間關(guān)系,也就是各部分數(shù)量占總數(shù)的百分比,因此也叫百分比圖。
2、常用統(tǒng)計圖的優(yōu)點:
(1)條形統(tǒng)計圖直觀顯示每個數(shù)量的多少。
(2)折線統(tǒng)計圖不僅直觀顯示數(shù)量的增減變化,還可清晰看出各個數(shù)量的多少。
(3)扇形統(tǒng)計圖直觀顯示部分和總量的關(guān)系。
數(shù)學廣角--數(shù)與形
2+4+6+8+10+12+14+16+18+20=(110)
規(guī)律:從2開始的n個連續(xù)偶數(shù)的和等于n×(n+1)。
10×(10+1)=10×11=110
從1開始的連續(xù)奇數(shù)的和正好是這串數(shù)個數(shù)的平方。
六年級知識點數(shù)學 第2篇
(一)分數(shù)乘法意義:
1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。
“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。
2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。
“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)
(二)分數(shù)乘法計算法則:
1、分數(shù)乘整數(shù)的計算方法:用分子乘整數(shù)的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)
(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結(jié)果必須是最簡分數(shù))。
2、分數(shù)乘分數(shù)的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。
(2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結(jié)果才是最簡單分數(shù))。
(4)分數(shù)的基本性質(zhì):分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。
(三)積與因數(shù)的關(guān)系:
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b>1時,c>a。
一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c
一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當b=1時,c=a。
在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。
六年級知識點數(shù)學 第3篇
一、要明確復(fù)習的目的、任務(wù), 從實際出發(fā)
復(fù)習絕不能搞成簡單的機械重復(fù)。應(yīng)通過復(fù)習系統(tǒng)整理小學階段所學的數(shù)學基礎(chǔ)知識,理清知識的重點和關(guān)鍵, 搞清知識間的內(nèi)在聯(lián)系, 使學生的四則計算能力、初步的邏輯思維能力和空間觀念在原有的基礎(chǔ)上得到進一步的提高。
通過復(fù)習,學生能系統(tǒng)地掌握有關(guān)整數(shù)、小數(shù)、分數(shù)、百分數(shù)、比和比例、簡易方程等基礎(chǔ)知識, 并能正確、迅速地進行整數(shù)、小數(shù)和分教的四則計算, 提高計算能力。進一步掌握一常用的計量單位, 能夠比較熟練地計算一些幾何形體的周長、面積和體積, 并能進行簡單你土地丈量和土石方計算, 培養(yǎng)學生的空間觀念。能夠掌握所學的常見的數(shù)量關(guān)系和解}答應(yīng)用題的方法, 提高學生用算術(shù)方法和列方程解應(yīng)用題的能力,培養(yǎng)學生邏輯思維能力科解決實際間題的能力。
復(fù)習前一定要結(jié)合本班學生的實際確定重點, 選取的教學方法進行復(fù)習。每節(jié)課都要有明確的復(fù)習目的、要求和主攻方向,這樣才能提高復(fù)習質(zhì)量。
二、確定復(fù)習的重點及范圍
復(fù)習不是簡單地重復(fù)以前所學的知識, 教師必須重視授課的內(nèi)容, 對已學的知識進行系統(tǒng)的整理, 復(fù)習時,要注意發(fā)揮學生的主體作用,調(diào)動學生學習的積極性, 啟發(fā)他們自學, 自己歸納整理所學的知識, 使知識系統(tǒng)化。或啟發(fā)學生質(zhì)疑間難, 由教師引導(dǎo)學生釋疑,以促進學生深入理解知識。下面是十個復(fù)習重點:
1)整數(shù)和小數(shù)的意義、讀寫法, 計量單位和名數(shù)的互化。
2)整數(shù)、小數(shù)、分數(shù)的四則混合運算。
3)平面圖形的概念、周長和面積。
4)簡易方程。
5)數(shù)的整除和珠算。
6)分數(shù)、百分數(shù)的意義和性質(zhì)及繁分數(shù)的化簡。
7)立體圖形的表面積和體積。
8)比和比例。
9)各類應(yīng)用題的解法及列方程解應(yīng)用題。
1 0)統(tǒng)計表和統(tǒng)計圖。
六年級知識點數(shù)學 第4篇
(一)意義:用點線面積等來表示相關(guān)的量之間的數(shù)量關(guān)系的圖形叫做統(tǒng)計圖。
(二)分類
1、條形統(tǒng)計圖
用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少畫成長短不同的直條,然后把這些直線按照一定的順序排列起來。
優(yōu)點:很容易看出各種數(shù)量的多少。
注意:畫條形統(tǒng)計圖時,直條的寬窄必須相同。
取一個單位長度表示數(shù)量的多少要根據(jù)具體情況而確定;
復(fù)式條形統(tǒng)計圖中表示不同項目的直條,要用不同的線條或顏色區(qū)別開,并在制圖日期下面注明圖例。
制作條形統(tǒng)計圖的一般步驟:
(1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。
(2)在水平射線上,適當分配條形的位置,確定直線的寬度和間隔。
(3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。
(4)按照數(shù)據(jù)的大小畫出長短不同的直條,并注明數(shù)量。
2、折線統(tǒng)計圖
用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點,然后把各點用線段順次連接起來。
優(yōu)點:不但可以表示數(shù)量的多少,而且能夠清楚地表示出數(shù)量增減變化的情況。
注意:折線統(tǒng)計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據(jù)年份或月份的間隔來確定。
制作折線統(tǒng)計圖的一般步驟:
(1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。
(2)在水平射線上,適當分配折線的位置,確定直線的寬度和間隔。
(3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。
(4)按照數(shù)據(jù)的大小描出各點,再用線段順次連接起來,并注明數(shù)量。
3、扇形統(tǒng)計圖
用整個圓的面積表示總數(shù),用扇形面積表示各部分所占總數(shù)的百分數(shù)。
優(yōu)點:很清楚地表示出各部分同總數(shù)之間的關(guān)系。
制扇形統(tǒng)計圖的一般步驟:
(1)先算出各部分數(shù)量占總量的百分之幾。
(2)再算出表示各部分數(shù)量的扇形的圓心角度數(shù)。
(3)取適當?shù)陌霃疆嬕粋€圓,并按照上面算出的圓心角的度數(shù),在圓里畫出各個扇形。
(4)在每個扇形中標明所表示的各部分數(shù)量名稱和所占的百分數(shù),并用不同顏色或條紋把各個扇形區(qū)別開。
六年級知識點數(shù)學 第5篇
比
比:兩個數(shù)相除也叫兩個數(shù)的比
1、比式中,比號(∶)前面的數(shù)叫前項,比號后面的項叫做后項,比號相當于除號,比的前項除以后項的商叫做比值。
連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數(shù)的關(guān)系,可以用分數(shù)表示,寫成分數(shù)的形式,讀作幾比幾。
例:12∶20= =12÷20= 12∶20讀作:12比20
區(qū)分比和比值:比值是一個數(shù),通常用分數(shù)表示,也可以是整數(shù)、小數(shù)。
比是一個式子,表示兩個數(shù)的關(guān)系,可以寫成比,也可以寫成分數(shù)的形式。
3、比的基本性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變。
4、化簡比:化簡之后結(jié)果還是一個比,不是一個數(shù)。
(1)、用比的前項和后項同時除以它們的最大公約數(shù)。
(2)、兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、兩個小數(shù)的比,向右移動小數(shù)點的位置,也是先化成整數(shù)比。
5、求比值:把比號寫成除號再計算,結(jié)果是一個數(shù)(或分數(shù)),相當于商,不是比。
6、比和除法、分數(shù)的區(qū)別:
除法:被除數(shù)除號(÷) 除數(shù)(不能為0) 商不變性質(zhì) 除法是一種運算
分數(shù):分子分數(shù)線(—)分母(不能為0) 分數(shù)的基本性質(zhì) 分數(shù)是一個數(shù)
比:前項比號(∶) 后項(不能為0) 比的基本性質(zhì) 比表示兩個數(shù)的關(guān)系
商不變性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)的基本性質(zhì):分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)除法和比的應(yīng)用
1、已知單位“1”的量用乘法。
2、未知單位“1”的量用除法。
3、分數(shù)應(yīng)用題基本數(shù)量關(guān)系(把分數(shù)看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙
(2)甲比乙多(少)幾分之幾?
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
5、畫線段圖:
(1)找出單位“1”的量,先畫出單位“1”,標出已知和未知。
(2)分析數(shù)量關(guān)系。(3)找等量關(guān)系。(4)列方程。
兩個量的關(guān)系畫兩條線段圖,部分和整體的關(guān)系畫一條線段圖。
六年級知識點數(shù)學 第6篇
第一單元? 圓柱和圓錐
1、“點、線、面、體”之間的關(guān)系是:
點的運動形成線;
線的運動形成面;
面的旋轉(zhuǎn)形成體。
2、圓柱的特征:
(1)圓柱的兩個底面是半徑相等的兩個圓,側(cè)面是曲面。
(2)兩個底面間的距離叫做圓柱的高。
(3)圓柱有無數(shù)條高,且高的長度都相等。
(4)圓柱是由長方形繞長或?qū)捫D(zhuǎn)360度得到的立方體,所以沿高線切割后的切面是長方形。
3、圓錐的特征:
(1)圓錐的底面是一個圓,和底面相對的位置有一個頂點。
(2)圓錐的側(cè)面是一個曲面。
(3)圓錐只有一條高。
(4)圓錐是由直角三角形繞一條直角邊旋轉(zhuǎn)360度得到的立方體,所以沿高線切割后的切面是等腰三角形。
4、沿圓柱的高剪開,圓柱的側(cè)面展開圖是一個長方形(或正方形)(如果不是沿高剪開,有可能還會是平行四邊形)。
圓柱的側(cè)面積=底面周長×高,用字母表示為:S側(cè)=Ch。
圓柱的側(cè)面積公式的應(yīng)用:
(1)已知底面周長和高,求側(cè)面積,可運用公式:S側(cè)=ch;
(2)已知底面直徑和高,求側(cè)面積,可運用公式:S側(cè)=πdh;
(3)已知底面半徑和高,求側(cè)面積,可運用公式:S側(cè)=2πrh
圓柱表面積的計算方法:如果用S側(cè)表示一個圓柱的側(cè)面積,S底表示底面積,d表示底面直徑,r表示底面半徑,h表示高,那么這個圓柱的表面積為:S表=S側(cè)+2S底? 或S表=πdh+πd2/2? ?或S表=2πrh+2πr2
圓柱表面積的計算方法的特殊應(yīng)用:
(1)圓柱的表面積只包括側(cè)面積和一個底面積的,例如無蓋水桶等圓柱形物體。
(2)圓柱的表面積只包括側(cè)面積的,例如煙囪、油管等圓柱形物體。
5、圓柱的體積:一個圓柱所占空間的大小。
6、圓柱體積公式的推導(dǎo):
復(fù)習六年級上冊圓的面積公式的推導(dǎo):把圓等分的份數(shù)越多,拼成的圖形就越接近平行四邊形或長方形。拼成的平行四邊形的底相當于圓周長的一半,高相當于圓的半徑;
拼成的長方形的長相當于圓周長的一半,寬相當于圓的半徑。所以圓的面積=π×半徑×半徑=π×半徑2
如同,圓的面積公式的推導(dǎo),也可以沿著圓柱底面的扇形和圓柱的高把圓柱切開,把它分成若干等份,分得越細越好,再把它拼成一個近似長方體的立體圖形,形狀改變了,但體積沒變,那么就可以發(fā)現(xiàn)拼成的這個長方體的底面積與圓柱的底面積是相等的,長方體的高也與圓柱的高相等,而長方體的體積=底面積×高,也就等于圓柱的體積。因此,
圓柱的體積=底面積×高如果用V表示圓柱的體積,S表示底面積,h表示高,那么V=Sh 。
例題:填空:圓柱體積公式推導(dǎo)過程是利用(轉(zhuǎn)化)的數(shù)學思想,在此過程中(形狀)變了,(體積)沒變。拼成圖形的高于圓柱的(高)相等,他們的底面積(相等)所以圓柱的體積公式為(底面積×高)
圓柱體積公式的應(yīng)用:
(1)計算圓柱體積時,如果題中給出了底面積和高,可用公式:V=Sh。
(2)已知圓柱的底面半徑和高,求體積,可用公式:V=πr2h;
(3)已知圓柱的底面直徑和高,求體積,可用公式:V=π(d/2)2h;
(4)已知圓柱的底面周長和高,求體積,可用公式:V=π(C/2π)2h;
圓柱形容器的容積=底面積×高,用字母表示是V=Sh。
6、圓柱形容器公式的應(yīng)用與圓柱體積公式的應(yīng)用計算方法相同。
7、圓錐的體積:一個圓錐所占空間的大小。
圓錐的體積=1/3×底面積×高 如果用V表示圓錐的體積,S表示底面積,h表示高,
則字母公式為:1/3Sh
圓錐體積公式的應(yīng)用:
(1)求圓錐體積時,如果題中給出底面積和高這兩個條件,可以直接運用“v= 1/3Sh”這一公式。
(2)求圓錐體積時,如果題中給出底面半徑和高這兩個條件,可以運用1/3πr?h
(3)求圓錐體積時,如果題中給出底面直徑和高這兩個條件,可以運用1/3π(d/2)?h
(4)求圓錐體積時,如果題中給出底面周長和高這兩個條件,可以運用1/3π(c/2r)?h
六年級知識點數(shù)學 第7篇
一、確定物體位置的方法:
1、先找觀測點;
2、再定方向(看方向夾角的度數(shù));
3、最后確定距離(看比例尺)
二、描繪路線圖的關(guān)鍵是選好觀測點,建立方向標,確定方向和路程。
三、位置關(guān)系的相對性:
1、兩地的位置具有相對性在敘述兩地的位置關(guān)系時,觀測點不同,敘述的方向正好相反,而度數(shù)和距離正好相等。
四、相對位置:東--西;南--北;南偏東--北偏西。
六年級知識點數(shù)學 第8篇
1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側(cè)面和高。認識圓錐的底面和高。
2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。
3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側(cè)面,底面是平面,側(cè)面是曲面,。
5、圓柱的側(cè)面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當?shù)酌嬷荛L和高相等時,側(cè)面沿高展開后是一個正方形。
6、圓柱的表面積=圓柱的側(cè)面積+底面積×2即S表=S側(cè)+S底×2或2πr×h + 2×πr2
7、圓柱的側(cè)面積=底面周長×高即S側(cè)=Ch或2πr×h
8、圓柱的體積=圓柱的底面積×高,即V=sh或πr2×h
(進一法:實際中,使用的材料都要比計算的結(jié)果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。)
9、圓錐只有一個底面,底面是個圓。圓錐的側(cè)面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的.高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。)
11、把圓錐的側(cè)面展開得到一個扇形。
12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3 Sh或πr2×h÷3
13、常見的圓柱圓錐解決問題:①、壓路機壓過路面面積(求側(cè)面積);
②、壓路機壓過路面長度(求底面周長);
③、水桶鐵皮(求側(cè)面積和一個底面積);
④、廚師帽(求側(cè)面積和一個底面積);
通風管(求側(cè)面積)。
小學數(shù)學基數(shù)和序數(shù)簡介
基數(shù):一、二、三、四、五、六、七、八、九、十。
序數(shù):第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。
基數(shù)在數(shù)學上,是集合論中刻畫任意集合大小的一個概念。兩個能夠建立元素間一一對應(yīng)的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一一對應(yīng),是兩個對等的集合。
序數(shù)原來被定義為良序集的序型,而良序集A的序型,作為從A的元素的屬性中抽象出來的結(jié)果,是所有與A序同構(gòu)的一切良序集的共同特征,即定義為{B|BA}。
數(shù)學圖形的變換知識點
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特征和性質(zhì):①對稱點到對稱軸的距離相等;
②對稱點的連線與對稱軸垂直;
③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉(zhuǎn)時應(yīng)抓住三點:①旋轉(zhuǎn)中心;
②旋轉(zhuǎn)方向;
③旋轉(zhuǎn)角度。旋轉(zhuǎn)只改變物體的位置,不改變物體的形狀、大小。
六年級知識點數(shù)學 第9篇
在熟悉的生活情境中初步認識負數(shù),能正確的讀、寫正數(shù)和負數(shù),知道0既不是正數(shù)也不是負數(shù)。
初步學會用負數(shù)表示一些日常生活中的實際問題,體驗數(shù)學與生活的密切聯(lián)系。
能借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。
像-16、-500、-3/8、…這樣的數(shù)叫做負數(shù)。
-3/8讀作負八分之三。
16,200,3/8,…這樣的數(shù)叫做正數(shù)。正數(shù)前面可以加“+”號,也可以省去“+”號。
+讀作正六點三。
0既不是正數(shù),也不是負數(shù)。
℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃
如果20XX表示存入20XX元,那么-500表示支出了500元。向東走3m記作+3,向西4m記作-4。
在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
0是正數(shù)和負數(shù)的分界點,所有的負數(shù)都在0的左邊,也就是負數(shù)都比0小,而正數(shù)都比0大,負數(shù)都比正數(shù)小。
負號后面的數(shù)越大,這個數(shù)就越小。如:-8<-6。
六年級知識點數(shù)學 第10篇
學生需要在課堂上做好筆記,用來記錄老師講課重點、補充難題、聽課心得等內(nèi)容,方便日后復(fù)習與記憶。而小學數(shù)學筆記的記錄,很多孩子無法準確掌握,需要下點工夫,找到適合自己的方法。
一、為什么要記筆記?
筆記可以方便日后有重點、不失真地復(fù)習。
奧數(shù)課堂通常包含大量的信息,涵蓋定義、公式、解題技巧等各個方面。大多數(shù)同學難以一堂課完全掌握全部內(nèi)容。尤其我們的課堂還經(jīng)常包含一些經(jīng)典的難題、補充題,單憑一次性的記憶無法提供充分的反芻的素材。
二、記筆記要避免的誤區(qū)
然而,很多同學出于不自信或者對家長的敷衍,為了筆記而筆記——筆記完成就“大功告成”、束之高閣。殊不知:記在自己腦袋里面的知識才是自己的知識,有筆記而無復(fù)習正是做筆記的錯誤。
三、記筆記的形式
你們的筆記本內(nèi)容多嗎?平時書包裝滿的時候,你能夠方便的找到筆記本嗎?單獨閱讀筆記的時候,你覺得豐富嗎?如果這三個問題你都回答“否”,那么請考慮一下將全部的筆記搬到講義上去。
筆記一定要方便日后查閱。書寫過程中,字跡不要求美觀,但是至少直觀。
關(guān)于某一題的延伸記錄在題目旁邊,關(guān)于一講的梳理可以放到章節(jié)前,補充的題目可以放到章節(jié)后,個人心得可以放在頁眉頁腳。如果有補充隨材還可以粘貼或者插入到講義當中。
簡而言之,筆記在形式上的要求就是:用最小的篇幅記錄最多的內(nèi)容,同時分出清晰地層次。
六年級知識點數(shù)學 第11篇
一、 認識圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。
一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。
把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個圓內(nèi)最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同圓或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。
在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的 。
用字母表示為:d=2r或r =
8、軸對稱圖形:
如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。
折痕所在的這條直線叫做對稱軸。(經(jīng)過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1一條對稱軸的圖形有:
角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是:
長方形
只有3條對稱軸的圖形是:
等邊三角形
只有4條對稱軸的圖形是:
正方形;
有無數(shù)條對稱軸的圖形是:
圓、圓環(huán)。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:
在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。
發(fā)現(xiàn)一般規(guī)律,就是圓周長與它直徑的比值是一個固定數(shù)(π)。
圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。
用字母π(pai) 表示。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數(shù)。
圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π ≈ 。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是倍。
(3)、世界上第一個把圓周率算出來的人是我國的數(shù)學家祖沖之。
4、圓的周長公式:
C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。
在一個長方形里畫一個最大的圓,圓的直徑等于長方形的寬。
6、區(qū)分周長的一半和半圓的周長:
(1) 周長的一半:等于圓的周長÷2 計算方法:2π r ÷ 2 即 π r
(2)半圓的周長:等于圓的周長的一半加直徑。
計算方法:πr+2r
六年級知識點數(shù)學 第12篇
記筆記的基本方法
記入筆記的內(nèi)容一定要經(jīng)過篩選。每一名學生都有自己獨特的筆記需求,相應(yīng)的它也會有自己的篩選方法。拋開具體的科目、知識點,這里有一些參考標準。
1、內(nèi)容本身不存在疑問。
我們經(jīng)常發(fā)現(xiàn)部分同學在記錄解題方法時抄寫錯誤、或者照搬板書布局,最終他自己都無法清晰地讀出正確的解題過程。這樣的錯誤不僅會形成無用的筆記,還可能引導(dǎo)思維走入歧途。
2、重點記錄自己不熟悉的內(nèi)容。
為了照顧大多數(shù)、防止遺漏,老師在總結(jié)的時候通常會往多了講,以至于同樣的幾何模型,五年級上學期提到一次、下學期再復(fù)習一次、到了六年級還會梳理兩次。如果學生不加甄別、反復(fù)記錄,費時費力不討好,還容易滋生厭惡。——如果你實在很熟悉,留下一個記號。
3、珍惜自己的心得。
黑板上或講義上的內(nèi)容都是老師的知識,不論多么優(yōu)秀的老師,他無法直接將自己的思路完整的拷貝進入學生的大腦。所以知識的傳承需要學生的記錄、復(fù)習、練習等等。而真正掌握知識點的最重要表現(xiàn)就是產(chǎn)生自己的認識與歸納。
4、記錄經(jīng)典題目。
不論小學、中學還是大學,很多時候?qū)W習終究脫離不了題目。如果在某一個角落、一本書當中真的有那么一道題、一段話讓你受益匪淺,那么勇敢的記錄下來。不要將筆記內(nèi)容局限在老師所供、講義所言——它應(yīng)當幫助記錄所有對你重要的內(nèi)容。
除了這些內(nèi)容上的篩選,熟練的同學還應(yīng)該考慮下筆記當中布局與記號。比如,過去老師常使用“△”“.”或者“Ⅱ”來標記相對重要的內(nèi)容,☆表示最重要的知識點,“→”標記自己的心得,“?”表示自己的疑問等等。這些符號,與紅色、黑色墨跡搭配能夠形成層次鮮明的內(nèi)容體系,方便自己的不同的場合下復(fù)習想復(fù)習的內(nèi)容。
六年級知識點數(shù)學 第13篇
圓
一、圓的特征
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的2倍:d=2r 或 r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π = 周長÷直徑≈
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr
圓周率π是一個無限不循環(huán)小數(shù),是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑= πr+d
三、圓的面積s
1、圓面積公式的推導(dǎo)
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)
S圓 =πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則,而長方形的面積則最小。
周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。
4、環(huán)形面積 =大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內(nèi)切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數(shù)據(jù)
π 2π 3π 4π 5π
六年級知識點數(shù)學 第14篇
小數(shù)
1 、小數(shù)的意義
(1)把整數(shù)1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數(shù)表示。
(2)一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……
(3)一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。
(4)在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。
2、小數(shù)的分類
(1)純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如:
、 都是純小數(shù)。
(2)帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。
例如:
、 都是帶小數(shù)。
(3)有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。
例如:
、 、 都是有限小數(shù)。
(4)無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。
例如:
…… ……
(5)無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。
例如:π
(6)循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。
例如:
…… …… ……
(7)一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。
例如:
……的循環(huán)節(jié)是“ 9 ” , ……的循環(huán)節(jié)是“ 54 ” 。
(8)純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。
例如:
…… ……
(9)混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。
例如:
…… ……
(10)寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán)節(jié)只有 一個數(shù)字,就只在它的上面點一個點。
例如:
…… 簡寫作:(?) ; …… 簡寫作:(?)02(?) 。
六年級知識點數(shù)學 第15篇
一、 數(shù)與代數(shù)
(一) 數(shù)的運算
第1周 定義新運算
定義新運算是指用一個符號和已知運算表達式表示一種新的運算。解答定義新運算,關(guān)鍵是要正確地理解新定義的算式含義,然后嚴格按照新定義的計算程序,將數(shù)值代入,轉(zhuǎn)化為常規(guī)的四則運算算式進行計算。
第2、3、4、5周 簡便運算
根據(jù)算式的結(jié)構(gòu)和數(shù)的特征,靈活運用運算法則、定律、性質(zhì)和某些公式,可以把一些較復(fù)雜的四則混合運算化繁為簡、化難為易。
第24周 比較數(shù)的大小
一些較復(fù)雜的數(shù)或式子的值的大小比較,可以靈活運用基本的比較整數(shù)、小數(shù)、分數(shù)大小的方法,有時我們還可以結(jié)合題目的特征運用特殊的比較方法。
(二)代數(shù)初步
第9周 設(shè)數(shù)法解題
在小學數(shù)學競賽中,常常會遇到一些看起來缺少條件的題目,按常規(guī)解法似乎無解。但仔細分析就會發(fā)現(xiàn),題目中缺少的條件,對于答案并無影響,這時就可以采用“設(shè)數(shù)代入法”,即對題目中“缺少”的條件,假設(shè)一個數(shù)代入(當然假設(shè)的這個數(shù)要盡量方便計算),然后進行解答。
第13周 代數(shù)法解題
有些數(shù)量關(guān)系比較復(fù)雜的分數(shù)應(yīng)用題,用算術(shù)方法解答比較繁瑣,甚至無法列出算式,這時我們可根據(jù)題中的等量關(guān)系列方程解答。
第38周 同余法解題
同余這個概念最初是由德國數(shù)學家高斯發(fā)明的。同余的定義是這樣的:
兩個整數(shù)a,b,如果它們除以同一自然數(shù)m所得的余數(shù)相同,則稱a,b對于模m同余。記作:a≡b(mod m)。讀作:a同余于b模m。
應(yīng)用同余性質(zhì)解題的關(guān)鍵是要在正確理解的基礎(chǔ)上靈活運用同余性質(zhì)。把求一個較大的數(shù)除以某數(shù)的余數(shù)問題轉(zhuǎn)化為求一個較小的數(shù)除以這個數(shù)的余數(shù),使復(fù)雜的題變簡單,使困難的題變?nèi)菀住?/p>
第40周 解不定方程
當方程的個數(shù)比方程中未知數(shù)的個數(shù)少時,我們就稱這樣的方程為不定方程。
解不定方程是一般要將原方程適當變形,把其中的一個未知數(shù)用另一個未知數(shù)來表示,然后在一定范圍內(nèi)試驗求解。解題時要注意觀察未知數(shù)前面系數(shù)的特點,盡量縮小未知數(shù)的取值范圍,減少試驗的次數(shù)。解答應(yīng)用題時,要根據(jù)題中的限制條件取適當?shù)闹怠?/p>
二、 圖形與幾何
第18、19、20周 面積計算
計算平面圖形的面積時,我們要認真觀察圖形,分析、研究已知條件,并加以深化,再運用我們已有的基本幾何知識,適當添加輔助線,搭一座連通已知條件與所求問題的小“橋”,就會使你順利地達到目的;在進行組合圖形的面積計算時,要仔細觀察,認真思考,看清組合圖形是由幾個基本單位組成的,還要找出圖中的隱蔽條件與已知條件和要求的問題之間的關(guān)系;對于一些比較復(fù)雜的組合圖形,有時直接分解有一定的困難,這時,可以通過把其中的部分圖形進行平移、翻折或旋轉(zhuǎn),化難為易。
第27、28周 表面積、體積
小學階段所學的立體圖形主要有四種:長方形、正方形、圓柱體和圓錐體。從平面圖形到立體圖形是認識上的一個飛躍,需要有更高水平的空間想象能力。因此,要牢固掌握這些幾何圖形的特征和有關(guān)的計算方法,能將公式做適當?shù)淖冃危B(yǎng)成“數(shù)與形”結(jié)合的好習慣,解題時要認真細致觀察,合理大膽想象,正確靈活地計算。
解答立體圖形的體積問題時,要注意以下幾點:
(1)物體沉入水中,水面上升部分的體積等于物體的體積。把物體從水中取出,水面下降部分的體積等于物體的體積。這是物體全部浸沒在水中的情況。如果物體不全部浸沒在水中,那么排開水的體積就等于浸在水中的那部分物體的體積。
(2)把一種形狀的物體變?yōu)榱硪环N形狀的物體后,形狀變了,但它的體積保持不變。
(3)求一些不規(guī)則形體體積時,可以通過變形的方法求體積。
(4)求與體積相關(guān)的最大、最小值時,要大膽想象,多思考、多嘗試。
三、 與分數(shù)、比、百分數(shù)有關(guān)的應(yīng)用題
第6、7、8周 轉(zhuǎn)化單位“1”
解答較復(fù)雜的分數(shù)應(yīng)用題時,我們往往從題目中找出不變的量,把不變的量看做單位“1”,將已知條件進行轉(zhuǎn)化,找出所求數(shù)量相當于單位“1”的幾分之幾,再列式解答。
第10、11周 假設(shè)法解題
假設(shè)法解題的思考方法是先通過假設(shè)改變題目的條件,然后再和已知條件配合推算。有些題目用假設(shè)法思考,能找到巧妙的解答思路。
第12周 倒推法解題
倒推法解題是從最后的結(jié)果出發(fā),運用加和減、乘和除之間的互逆關(guān)系,從后往前一步一步地推算,直到找到最初的數(shù)據(jù),這種方法又常被稱為“還原法”。適合用倒推法解題的數(shù)學問題常滿足以下條件:已知最后的結(jié)果和到達最后結(jié)果時的每一步具體過程。
第14、15周 比的應(yīng)用
我們已經(jīng)學過比的知識,都知道比與分數(shù)、除法有著密切的聯(lián)系,比與分數(shù)能夠互相轉(zhuǎn)化。運用這種方法解決一些實際問題可以化難為易,化繁為簡。
六年級知識點數(shù)學 第16篇
一、分數(shù)乘法
(一)、分數(shù)乘法的計算法則:
1、分數(shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)
2、分數(shù)與分數(shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數(shù)進行乘法計算時,要先把帶分數(shù)化成假分數(shù)再進行計算。
(二)、規(guī)律:(乘法中比較大小時)
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。
一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。
一個數(shù)(0除外)乘1,積等于這個數(shù)。
(三)、分數(shù)混合運算的運算順序和整數(shù)的運算順序相同。
(四)、整數(shù)乘法的交換律、結(jié)合律和分配律,對于分數(shù)乘法也同樣適用。
乘法交換律:
a × b = b × a
乘法結(jié)合律:
( a × b )×c = a × ( b × c )
乘法分配律:
( a + b )×c = a c + b c a c + b c = ( a + b )×c
二、分數(shù)乘法的解決問題
(已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)
1、找單位“1”:
在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一個數(shù)的幾倍:
一個數(shù)×幾倍; 求一個數(shù)的幾分之幾是多少:
一個數(shù)× 。
3、寫數(shù)量關(guān)系式技巧:
(1)“的” 相當于 “×” “占”、“是”、“比”相當于“ = ”
(2)分率前是“的”:
單位“1”的量×分率=分率對應(yīng)量
(3)分率前是“多或少”的意思:
單位“1”的量×(1 分率)=分率對應(yīng)量
三、倒數(shù)
1、倒數(shù)的意義:
乘積是1的兩個數(shù)互為倒數(shù)。
強調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,倒數(shù)不能單獨存在。
(要說清誰是誰的倒數(shù))。
2、求倒數(shù)的方法:
(1)、求分數(shù)的倒數(shù):交換分子分母的位置。(2)、求整數(shù)的倒數(shù):把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。(3)、求帶分數(shù)的倒數(shù):把帶分數(shù)化為假分數(shù),再求倒數(shù)。
(4)、求小數(shù)的倒數(shù):
把小數(shù)化為分數(shù),再求倒數(shù)。
3、1的倒數(shù)是1; 0沒有倒數(shù)。
因為1×1=1;0乘任何數(shù)都得0, (分母不能為0)
4、 對于任意數(shù) ,它的倒數(shù)為 ;非零整數(shù) 的倒數(shù)為 ;分數(shù) 的倒數(shù)是 ;
5、真分數(shù)的倒數(shù)大于1;假分數(shù)的倒數(shù)小于或等于1;帶分數(shù)的倒數(shù)小于1。
六年級知識點數(shù)學 第17篇
第四單元 比例
1、比的意義(1)兩個數(shù)相除又叫做兩個數(shù)的比
(2)“:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。
(3)同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。
(4)比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。
(5)比的后項不能是零。
(6)根據(jù)分數(shù)與除法的關(guān)系,可知比的前項相當于分子,后項相當于分母,比值相當于分數(shù)值。
2、比的基本性質(zhì):比的前項和后項同時乘或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質(zhì)。
3、求比值和化簡比:
求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。
根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。它的結(jié)果必須是一個最簡比,即前、后項是互質(zhì)的數(shù)。
4、按比例分配:
在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。
5、比例的意義:表示兩個比相等的式子叫做比例。
組成比例的四個數(shù),叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
6、比例的基本性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)項的積。這叫做比例的基本性質(zhì)。
7、比和比例的區(qū)別
(1)比表示兩個量相除的關(guān)系,它有兩項(即前、后項);比例表示兩個比相等的式子,它有四項(即兩個內(nèi)項和兩個外項)。
(2)比有基本性質(zhì),它是化簡比的依據(jù);比例也有基本性質(zhì),它是解比例的依據(jù)。
8、成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。
用字母表示x/y=k(一定)
9、成反比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。
用字母表示x×y=k(一定)
10、判斷兩種量成正比例還是成反比例的方法:
關(guān)鍵是看這兩個相關(guān)聯(lián)的量中相對就的兩個數(shù)的商一定還是積一定,如果商一定,就成正比例;如果積一定,就成反比例。
11、比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
12、比例尺的分類
(1)數(shù)值比例尺和線段比例尺 (2)縮小比例尺和放大比例尺
13、圖上距離:
圖上距離/實際距離=比例尺
實際距離×比例尺=圖上距離
圖上距離÷比例尺=實際距離
14、應(yīng)用比例尺畫圖的步驟:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據(jù)比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
15、圖形的放大與縮小:形狀相同,大小不同。
16、用比例解決問題:
根據(jù)問題中的不變量找出兩種相關(guān)聯(lián)的量,并正確判斷這兩種相關(guān)聯(lián)的量成什么比例關(guān)系,并根據(jù)正、反比例關(guān)系式列出相應(yīng)的方程并求解。
17、常見的數(shù)量關(guān)系式:(成正比例或成反比例)
單價×數(shù)量=總價
單產(chǎn)量×數(shù)量=總產(chǎn)量
速度×時間=路程
工效×工作時間=工作總量
18、
已知圖上距離和實際距離可以求比例尺。
已知比例尺和圖上距離可以求實際距離。
已知比例尺和實際距離可以求圖上距離。
計算時圖距和實距單位必須統(tǒng)一。
19、播種的總公頃數(shù)一定,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?
答:每天播種的公頃數(shù)×天數(shù)=播種的總公頃數(shù)
已知播種的總公頃數(shù)一定,就是每天播種的公頃數(shù)和要用的天數(shù)的積是一定的,所以每天播種的公頃數(shù)和要用的天數(shù)成反比例。
六年級知識點數(shù)學 第18篇
第二單元 百分數(shù)二
(一)、折扣和成數(shù)
1、折扣:用于商品,現(xiàn)價是原價的百分之幾,叫做折扣。通稱“打折”。
幾折就是十分之幾,也就是百分之幾十。
解決打折的問題,關(guān)鍵是先將打的折數(shù)轉(zhuǎn)化為百分數(shù)或分數(shù),然后按照求比一個數(shù)多(少)百分之幾(幾分之幾)的數(shù)的解題方法進行解答。
商品現(xiàn)在打八折:現(xiàn)在的售價是原價的80﹪
商品現(xiàn)在打六折五:現(xiàn)在的售價是原價的65﹪
2、成數(shù):
幾成就是十分之幾,也就是百分之幾十。
解決成數(shù)的問題,關(guān)鍵是先將成數(shù)轉(zhuǎn)化為百分數(shù)或分數(shù),然后按照求比一個數(shù)多(少)百分之幾(幾分之幾)的數(shù)的解題方法進行解答。
這次衣服的進價增加一成:這次衣服的進價比原來的進價增加10﹪
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85﹪
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據(jù)國家稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發(fā)展經(jīng)濟、科技、教育、文化和國防安全等事業(yè)。
(3)應(yīng)納稅額:繳納的稅款叫做應(yīng)納稅額。
(4)稅率:應(yīng)納稅額與各種收入的比率叫做稅率。
(5)應(yīng)納稅額的計算方法:
應(yīng)納稅額=總收入×稅率
收入額=應(yīng)納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設(shè),也使得個人用錢更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢叫做本金。
(4)利息:取款時銀行多支付的錢叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅后利息=利息-利息的應(yīng)納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅后利息=本金×利率×時間×(1-利息稅率)
購物策略:
估計費用:根據(jù)實際的問題,選擇合理的估算策略,進行估算。
購物策略:根據(jù)實際需要,對常見的幾種優(yōu)惠策略加以分析和比較,并能夠最終選擇最為優(yōu)惠的方案
學后反思:做事情運用策略的好處
推薦訪問:知識點 數(shù)學 六年級知識點數(shù)學18篇 六年級知識點數(shù)學(匯總18篇) 六年級知識點梳理數(shù)學